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Abstract

A molecular system adsorbed on a dielectric surface is modeled as a

damped harmonic oscillator driven by a sinusoidal external force. The exact

propagator and wavefunction through the Feynman path integral method are

obtained. The second-quantization of this system is carried out. Expectation

values of several physical quantities are evaluartd. The amplitude for

transitions between harmonic oscillator states and damped driven oscillator

states are obtained explicitly, and the result is applied to a two-level

system.
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1. Introduction

The study of time-dependent oscillator systems has received a great deal

of attention both in classical and quantum mechanical studies. In the usual

quantum-mechanical treatment of these systems, a time-independent Hamiltonian

is assumed, which must be obtained through the Legendre transformation of the

Lagrangian function which describes the equation of motion for the system.(

In this context, it is unlikely that all physical oscillator systems have

conserved Hamiltonians. The Hamiltonian of a damnpd driven harmonic

oscillator is a typical one with explicit time-dependence. Even though there

have been extensive works (2) on this system, this apparently simple system has

not been exactly solved quantum mechanically, in contrast to the classical

case. Furthermore, the physical interpretations of the Hamiltonian itself and

of the time-dependent Schrodinger equation obtained by replacing the canonical

momentum with h in the Kaldirola-Kanai-type Hamiltonian (3 ) differ among

researchers. Some (4 ) claim that this Hamiltonian (accordingly the Schrodinger

equation) describes a dissipative quantum system, while others ( 5 ) object to

such an interpretation. From the viewpoint of group theory, Cervero et al
(6 )

interpreted it to represent a variable frequency oscillator with minimum

uncertainty.

The Feynman path integral formalism (7 ) provides a general approach to

quantum systems. Montroll (8 ) transformed the original Feynman path integral

into a Gaussian integral, and his method was applied by Cheng (9 ) to evaluate

the propagator for a force4 harmonic system. Once the propagator suitable to

a given system is obtained, the wavefunction of the system is easily

calculated. However. even if the Schrodinger equption i l-: d through1 the

path integral or some other method, there remains the problem of second-

quantization. In general, the Hamiltonian for the damped driven harmonic



zzcillaror (DDHO) is not conserved and not identical to the total energy of

zhe system, giving rise to much difficutly for developing a second-

quantization formalism. However, second-quantization, if possible, is

important in connection with the problem of finding invariants of a non-

conserved system, and for obtaining the coherent states (10 ) of DDHO.

On the other hand, the optical properties of molecules are greatly

altered when they are adsorbed cn or near a solid surface. During the past

decade, many theoretical and experimental methods have been developed to

investigate surface spectroscopy, surface-enhanced Ramann scattering

(SERS), ( 11) resonance fluorescence,' 1 2 ) photodissociation, (1 3 ) etc. There

exist, however, several criticisms and controversies regarding the

electromagnetic theory. (14) In order to better understand the surface

phenomena mentioned above, one must study at the quantum mechanical level the

dynamical behavior and optical response of the molecules adsorbed on a solid

(metal or dielectric) surface.

In this work, we present a study of the quantum mechanical properties of

a molecule adsorbed on or near a dielectric plane surface. We represent the

molecule as a polarizable point particle subject to a time-dependent external

electric field. We do not consider the nuclear vibrations in this work. In

Sec. 2 the classical equation of motion of the induced molecular dipole is

given, and this equation is transformed into that of a damped harmonic

oscillator driven by an external force. In Sec. 3 the propagator and

wavefunction are obtained through the Feynman path integral method. Energy

-xpectation values and dipole moment matrix elements are expressed in Sec. 4.

Secc. ', is devoted LO second quantization and caicuiation of the transition

probability between the harmonic oscillator states and damped driven harmonic

oscillator states. In Sec. 6 we discuss the results.



2. Classical Equation of Motion for the Dipole Moment

We consider a molecule adsorbed on a dielectric plane surface with

complex dielectric constant e and light beam incident from the vacuum side at

an angle 6 with respect to the z-axis normal to the surface (xy-plane). The

normal modes of the incident field satisfy Maxwell's equations subject to

appropriate boundary conditions. The wave vector k of the field, which is

assumed to be independent of frequency, is decomposed into a two-dimensional

component kII parallel to the surface and a z-component perpendicular to the

surface. The electric field vector is polarized in two ways. The first is

the s-polarized wave (s-wave) perpendicular to the incident plane defined by k

and z (a vector along the z-direction). The second is the p-polarized wave

(p-wave) in the incident plane. The local field E 2 (r t) at the adsorbed

molecule position r is expressed as
m

E2 (rmt) - E p(m 't) + Es(rm't) (2-1)

where t indicates time. E (r mt) represents the primary field, which consistspm

of the field incident directly on the molecule and the field reflected from

the solid surface when the molecule is absent, and E is calculated using theP

(15) - -
Fresnel formula. E s(r m, t) is the secondary field which represents the

field emitted by the induced molecular dipole and reflected back to it from

the surface. The induced dipole moment p(t) is the sum of dipole moments

induced by the primary and secondary fields. The classical equation of motion

for AA(t) is given by

+ -+ 0 0 2 (2-2)
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The dots indicate time derivatives, w0 is the oscillation frequency of the

dipole charge, 0 is a natural damping constant which measures the linewidth

in the optical processes, and a represent the effective molecular

polarizability tensor of second rank. In Eq. (2-2) we neglected the magnetic

effects on the dipole motion, and hereafter we set the permeability of the

surface dielectric to be unity. At the molecular position (0,0,d) the primary

field vector is calculated using the Fresnel formulas as

E (d,t) - E0 exp[-i~kd cosO + w't)] (2-3)EpL

where the components of E0 are given as

EOx - EO{OI -f(O(W)'O) Cosd

E O€  EO{l + f2 ( (E'),O)} (2-4)

EOz = EO{l + f 1 ( (W),O)}si n

6(w') - !E(w') - sin 2 0
f(' 2 s exp(2ikdcosO)

1 cE(w') + [E(co') - sin 20]

cosO [e(w') - sin2 ]h

f2(,E(')10) - cos2 sin201 exp(2ikdcosO) (2-5)
2 cosO + [e(w') -sin 26] ;

-(W') - e1 (W') + if2 (W') (2-6)

Here k - ki is the magnitude of the wavevector, and w' is the angular

frequency of the incident field.



The secondary field at the molecule position is expressed as a function

of the induced dipole moment, 
( 6 )

E (dt) = dt' G s[dd;t-t'] • (2-7)s - s ' dt'

where G is the scattering part of the dyadic Green's function.(17,18)s

Equation (2-7) represents the self-polarization effect of the induced dipole.

The electric field emitted by the dipole at an earlier time t' interacts with

the surface atom (or molecule), causing it to emit lights by polarization.

This emitted field by the surface atom (molecule) interacts with the adsorbed

molecule at a later time t > t', adding an extra induced dipole moment, which

emits radiation that polarizes the surface atom (molecule) again, etc.

Through these self-polarization processes, the secondary field yields a change

in the linewidth and oscillation frequency of the dipole. 
Efrima et al

(1 8 )

used a Fourier transformation method to solve Eq. (2-7), which gives an

integro-differential equation, and applied it to the Raman scattering problem

of an adsorbed molecular system. The Fourier transform of the dyadic Green's

function G5 (d;d;c') can be calculated only numerically, since it is given in

complicate integral form. To avoid such complexity, we incorporate the

effects of the secondary field into the linewidth and the oscillation

frequency of the dipole moment. In this manner, we obtain a modified

classical equation of motion for the dipole moment,

+ + - 0a(')E (d,t) (2-8)
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As mentioned above, the self-polarization effects are absorbed within the

modified damping constant y and modified frequency wm whose explicit forms

are(1 9)

7 -7 0 + Ys

2 2
Wm W 0 + LWM)

2
0 =-n.a(').FIm G (d;d;w).F] (2-9)

w- W 0 1 a- a(w')°[Re G (d;d; ,')° W0

where G(d;d;w') is the Fourier transform of G (d;d;t-t') and A = /AAIS5

Let us now introduce a coordinate system in which the effective

polarizability tensor a is diagonal,

a) ()xx + C V (W')q + a z(W)22 (2-10)X V Z

where x, 9 and i are unit vectors along the coordinate axes. We assume that

the molecule is isotropic and its dipole moment is directed toward the

positive z-direction. In this case we can set n = z, and thus only the z-

component of the primary field, which is given by Eq. (2-3) through (2-6), is

required in the equation of motion. Other molecular dipole moment

configurations are similar to this case, so that our method does not lose

generality. By this manner, Eq. (2-8) can be rewritten as



2 3( ( , . ) e iW' t
A + -y + mA f 3(e W)9) e (2-11)

where

f Eoa(w')w2sin 1 + fl( e ),9 ) ikd cosd (2-12)

Equation (2-11) can be written in a more familiar form if we take just the

real part of the external driving force. After some calculations, we obtain

the classical equation of motion for the dipole moment of the adsorbed

molecule as

"' -- 2

x + + Wm x f(t)/M 0  (2-13)

Here Qx - p, where Q is the average dipole charge, and m 0 is the mass of the

molecule. The form of equation of motion (2-13) is the same as that of the

usual damped driven harmonic oscillator, so that f is given as

f(t) - g(W',9) cos(W't-00 ) , (2-14-a)

2

2Eam w 2(w') sinO { 2 2
g(',G) - 9 g3( '9) {gl(w', ) + g2(',)

- cos9 cos(kdcose)[I,(ow)12 cosq + R(w',9){c 1 (W')cosn

+ f2(w')sinq ] + R(w',9) cosO sin(kdcos)E (w')sinn

S (')cos ')cos

92(')- R(w',9) cos9 cos(kdcosO) fe2 (W')cosT? - 4El(w')sinn}
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- R(w' ,) sin(kdcos)[RGwO) + cOsf{EI(w')cosq + E 2 (w')sin}

g3 w'O) - R2 ,''O) + oE(w') 2 c + 2R(w',O) cos6 ff1') 0Cosn

+ C2(k')sinr} (2-14-b)

00 tan-{g2[ (w')',)/gl( (' )}

1 i 2
- tan 1 2(w')/[[E (w') - sin 2 ] (2-14-c)

R(w',) = f[ w') - sin 20]2 + f2(W)

To avoid the complicated procedure of evaluating the wavefunction and other

quantities involved, we have taken the real part of the driving force. The

classical Lagrangian and Hamiltonian function corresponding to the equation of

motion (2-13) are given, respectively, as

Fi -2 1 22 f e (2-15)
L(X,x,t) = L7Ox - 7OmX + f(t)x exp[-yt(

[1 -2 yt 1 22H(xp,t) - 12 e + momX - f(t)xj exp(t) (2-16)

where p is the canonical momentum.



3. Propagator and Wavefunction

(20)
Recently Um et al have treated a quantum damped driven harmonic

oscillator with the path integral method. (7 ) Following their formalism, we

solve the Schrodinter wave equation

i t) = H4(x. (3-1)

where the Hamiltonian operator R is obtained by making the replacement p -iV

ax in Eq. (2-16). Adopting a Gaussian form for the propagator K,

Klx(t),t~x(O) ,O = A1exp -a(t)x2e t - b(t)xeyt/2 _ C(t)] (3-2)

which satisfies the wave equation

aK
ix at - HK (3-3)

we obtain three first-order differential equations for the coefficents in the

propagator. These differential equations are readily solved by the boundary

condition that K reduces to the propagator for a damped harmonic

ocsillator (2 1 ) when there is no driving force. Through the above procedure we

obtain an explicit form for K,

K~x(t),t;x0'] 0w2i sin(wt) expAl(t)x2 _ A2(t)x

K10't=,t2,i01 = [ ] e 2

x exp[ A (t)X 2 + A (t)xo] (3-4)



where x - x(0) and w = y-/41* represents the reduced frequency, which

will be assumed to be real throughout the present text. The coefficients in

Eq. 3-4) are given as

A(w', ) - g(w',6)/blI (U)

bI () -I (-, 2 + {2- ,2 + 2 /4}2]

-1[ 2 , 2 ]

- tan W ('W/ W, 2+ Y /4)]

A - e{t  cot(Wt)

(3-5)
i c ) eyt -cot(Jt) cos(' t-0- l - sin(w't-O-l)I

A(t) - iK e Llt~2w 0-01w~j 0-J~) ~01]

A(t) - - cot(ct)
A3 t)-2 2w I

A. (t) = - AeG)W et/2 + m0WX e t/ 2Z4ih sin(wt) e~/ ~('-0-0l) ih sin(wt)

The wavefunction, 0n(x,t), of the dipole moment at time t is obtained by

the formula

On (X,t) = f dx0 K[x,t; x0 ,0] On(X0,0) (3-6)

where n (x 00) is the wavefunction of a damped harmonic oscillator with the

reduced frequency w. Combining Eqs. (3-4) and (3-6), we obtain



(x,t) D(: 'i exp[-itn+'] cot 1( (t))-B,(t)1 exp[ B (t)x 2 +B(t)x

x H [D(t)(x-E(t-)1] (3-7)

where

~(t)= ~-+ cat(cWt)

D~t) = mwe t ]
E(t) -

1 2
B 1(t) = D (t) (I + i 0

B 2 (t) D D2(t) E(t) [1 + i 3 (t)]

(3-8)

22

B 3 t)= (t) Ei 2 ((t) [1 + 2 (t)]

-2 ((t))t

p 3 (t) - L 2 (j-p(t) W- tan(w't-0 0-0~1
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From now on, we shall use the notation (t) = , {ljt) - i' D(t) - D, etc.

for simiplicit; whenever there is no ambiguity. in obtaining the wavefunction

we have used the identity

n

exp[±in cot'i- = [1 + y2j2 ± ±in (3-Q)

We find the following useful relations between the coefficients in the

exponential terms of the wavefunction,

B +B = D ,  B B) = 2D2E, B + B, = D-E- (3-10)
1 1 23 3

which are used in later calculations.

4. Energy Expectation Values and Matrix Elements of the Dipole Moment

Using the Lagrangian of Eq. (2-15), the mechanical energy operator of the

system is easily obtained as

2 O

E r e - + 1 W x - xf(t) (4-1)
op 2m0  ax2  2 Om

We note that above energy operator is not identical to the Hamiltonian A

itself. A does not represent the total energy of the system, but rather is

the generator of the motion of an energy-dissipative open system. (22)

Equation (4-1) is the same as Eq. (6-1) in Ref. 20 except for the xf(t) term.

It is straightforward to calculate the matrix elements oi the energy operator:



2

<E > om n+l)(n+2) - 11B )6m,n+2 + 2(n+l)mn 2DB

(DE + 2A 1A 2B -DA )6~~ + {(n+j) + 2(2n+l) B, + 2E2 A2 - 2D 2-

+ j f2 (DE - 2A A A - DA% 6 + /"-( n 1- 2 2 D2 11 2 4 3 m,n-I i)( - 2 1 4D )
8m,n-2j

* exp[i(m-n) cot-l ((t))] (4-2)

where

A l ( t ) - Lm ID2 2  A A2 (t)- D[B2 2B 1E

A(w' ,9)bl(w') D2

A 3(t) - 2 cos(W't-o) , X4 (t) = D - B1  (4-3)
m

Evidently, only the diagonal element <Eop>n,n and four off-diagonal elements

<Eop>n+l,n and <Eop>n+2,n have non-zero values. The matrix elements of the

dipole moment are expressed as

m,n exp[im-n cotl(][2(n+l) 6 m,n+l + '2 6m,n-l + 2DE 6mn].

(4-4)

This equation contains the diagonal element, which in fact is closely related

to the parity problem of the wavefunction, as will be explained later.

However, the selection rule for the dipole transition between different states
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is Lm - ±1. Combining Eqs. (3-9) and (4-2), we arrive at the following

explicit form for the dipole matrix elements:

<,U>n~ Q [(n+l)he -Ytl ] feint +a i~t ,
n+l,n [m0.e [ + sin(wt)] = <> ,n+l

<> OA(w' cos(W't-O- I) (t # 0)
n,n m 0

(4-5)

<,>n,n - 0 (t - 0)

5. Second Quantization and Transition Probability

To obtain a second-quantization formalism for a molecular system adsorbed

on a solid surface, we define two functions,

u(t) - 2(t) 2 i (5-1)D(t) 2[l+ 2(t01

I(t) - 2i~u(t) B l(t)

where D(t) and (t) have already defined in Eq. (3-8) (n(t) is not the same as

the angle I in Eq. (2-14-b)). Using the relation of Eq. (3-10), we obtain

q(t) u*(t) - u(t) n*(t) = ix( (5-2)

Thus we define the time-dependent annihilation and creation operators as

a(t) - L-[1((t)(x-E(t)) - u(t) p + i'[B 2  2BE]}

I f 2 I



at (t) - .-[u*(t) {p + iX[B 2 -2B E]}- n*(t)(x-E(t))] (5-3)

where B1 (t), B2(t) and E(t) are defined in Eq. (3-8). We note that B2 (t) -

2B1 (t) E(t) is pure imaginary. We shall hereafter use the notation of u(t) -

u and q(t) - n. It is obvious that the non-Hermitian operators at(t) and a(t)

satisfy the commutation relation

[a(t), at (t)] = 1 (5-4)

Bv the definition of Eq. (5-3), we get

x - u* a(t) + u at(t) + E

(5-5)

p - n* a(t) + n at(t) - iX[B 2 - 2B1El

Obviously x and p satisfy the relation [x,p] - iX. Now we set

- .f (at(t))m10(t)> (5-6)

a(t)-(t)> 0 . (5-7)

Combining Eqs. (5-3) and Eq. (5-7), we obtain the time-dependent ground-state

wave function

0 (x,t) = <xlO(t)>
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+ 
0 e LB x2 + B2 (t)x - B (t)] . (5-8)

We note that 0o(x,t) reduces to 0 (x) at t = 0, which is the ground-state

wavefunction of a simple harmonic oscillator. Combining Eqs. (4-1), (5-4) and

(5-5), we find the second-quantized form of the energy Hamiltonian operator,

respectively, to be

12 2- t  1 22 t [.2 1 2 2
E - e2  + mU ]at (t)at(t) + lm0 e t + mU* ]a(t)a(t)

2 -27t w2u2 t 1 + MI E22B - t
+ [ImL e + m0 2mu 2(a (t)a(t)+)+ - (B2-BE)e- uf

"m 2 BEat(t) + [iV(B 2B E)e2yt u*f + 2*E(t)

- -m(B-2B E) 2 e -yt + 1 2 E2 - Ef (5-9)

H - e -t E op(5-10)
op

Equation (5-9) yields the same energy operator expectation values listed in

Eq. (4-2). It is now straightforward to obtain the second-quantized form of

physical quantities such as position, momentum, dipole moment operator, etc.

Let us find the relations between the time-independent operators at(t),

a(t) and time-independent operators ata. The latter ones are simply defined

for a simple harmonic oscillator as

a - 0 -y - x + + o)



(5-11)

Substitution of the above definitions into Eq. (5-3) yields

a(t) 0 B 1 (t)a + 82 (t)at + 03(t)

(5-12)

a t (t) - 0*(t)a + 0*(t)at + *(t)

where the coefficients are given by

a0 u(t ) 2B (t Itl(t)) i + 2 j

a 0

a 0 U(t) 2B(t)]
2(t) 1 I+ 2

a0

(5-13)

3= u(t)B 2 (t)

We now find an explicit expression for the transition probability between

two states Im(t)> and In(O)>, where In(O)> is a simple harmonic oscillator

state given by

In(O) > - (t n (0)> (5-14)

10(0)>I
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Here 10(0)> is the well-known ground state of the simple harmonic oscillator.

Using Eqs. (5-6), (5-12) and (5-14), we get

I m n IO()

<m(t)In(O)> = 1 <O(t)l(a(t)m (a) 0(0)>

- 7=n ! <0(t)I[8la + 02a* + 3]()no(o)> , (5-15)

where 10(t)> is the time-dependent ground state of the damped driven harmonic

oscillator, given by Eq. (5-8). <m(t)ln(O)> represents the probability

amplitude of finding the system in a state Im(t)> at time t, given that the

system was in a state In(O)> at time zero. To calculate the right side of Eq.

(5-15), we need to rearrange the operators in normal order, which means that

all the at's appear to the left of the a's. The normal-ordered arrangement is

carried out by introducing a normal-ordering operator
(2 3 ) N such that

l+ 2 + m(at)m * + -)n{f l+, + + }m] (5-16)

where a and a* are complex c-numbers. With this method, we obtain

[fila + fi2 at + 3]m(at )
n

M m-k i  n
1m-k n k

kl-0 k 2-0 k 3-O k) 1 k3 ki

tn+k 2 -k 3  k 1 -k 3 k1  k2 m-k1 -k2x(a ) (a) (5-17)



k I -k 3

Evidently a I0(0)> vanishes for all k3's except that k3 kI ., We have

used above the notation 1 - 01(t), 02 - 02
(t) and 3 - 0 3 (t)

' which will be

used hereafter. I ) means binomial distribution.

Substitution of Eq. (5-17) into Eq. (5-15) gives

<m(t)In(O)> - 1m~n! [m,n] m-k1 M(nkl)(n) kl k2  27mm-! kl n k 1 2 ',m--k

k I  k2

n-kl+k 2

x <0(t)l(a + ) I0(0)> (5-18)

where [mn] - min(m,n) implies the smaller of the two. Using Eqs. (5-8) and

(5-14), we find

<O(t)I(a + ) n0(0)> + [ J [f0lae t  + Jexp[-B
n-k +l1k 2.7-rT

2

-exp[B+ -}x + B2x H(k+k aX)

(5-19)

To integrate the right side of Eq. (5-19), we introduce a generating function

for the Hermite polynomial He(y) such that

Hesy) - a exp-s + 2sy s-O (5-20)

Then we have
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2

I -- dx exp - B1+ 21x + B2 x] Hn k +k 2 (a 0x)

Ed~
- d I(s) s-O (2 - n-k1+k2) (5-21)

where

2 2 * *2as+B

I(s) 0 E dy exp 2 y + y0 2. , (5-22)-a 0 J21 -'.1

which is easily integrated. Substituting the result of integration into Eq.

(5-21) and performing some calculations, we obtain the following result:

2 (B 2 * )2 1k n-k +k+k k , -
2 +2B'J 2(a k+0 2k 3  3 -2B* + a 2

0 1 2( 0  2 1) [23-B1

r2aoBz ln' k+k2 "k-
x 2 + 2 *J (k3: even) (5-23)

o 1

By Eqs; (5-18), (5-19) and (5-23), we obtain the probability amplitude as

<m(t)Il(O)> - 21  0 ] 0 +i ] exp [B3(t+ *B2
2 n L2 + 2B 1 I K 1 i I 2(a 2+2B*)J



nm-k 1 n-k +k 2  kI  k2 m-kl-k 2
[in, 1 2 3n'k n nk_2_3_1 2 3

k -0 k -0 k-O 1ki k 2 J1 k1  k 3 J (k3 /2)! 2 (k 2-ki)2

1 2 3

2B- a 2 k/2 2B n-k +k-k
X ] k 3 /2 * B+Q22 1 2 3 (k3: even) (5-24)

2 B 1+ a B1 +

The transition probability between the DDHO state Im(t)> and the simple

harmonic oscillator state In(O)> is given by

P m,n(t) - <m(t)in(0)>1 2  (5-25)

6. Results and Discussion

We have modeled a molecule adsorbed on a dielectric solid surface as a

damped harmonic oscillator driven by a time-dependent electric field,

consisting of a primary and a secondary field. The Hamiltonian of this

modeled system is not identical to the mechanical energy operator, showing a

general characteristic of the Kalidola-Kanai-type Hamiltonian. The propagator

of Eq. (3-4) has the same structure as that of Gerry (2 4 ) when there exists no

driving force, and is similar to that of Dodonov et al. (4 ) The wavefunction

of Eq. (3-7) has no definite parity, which can be easily seen from the matrix

2
elements of x and x

<m(t)Ixln(t)> - /T u(t) 6m,n+l + T/n u*(t) 6m,n.I + E(t)
6mn . (6-1)

2in_>___n___2 2 m,n+2 n--) u* 2(t)6<m(t)IX In(t)> - I(n+l)(n+2) u (t) 6 ~+ + n I ) 2*(0 m,n-2
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+ [(2n+l)u(t)12 + E2(t)] 6mn

+ 2 -(n+l) u(t)E(t) 6 rm,n+l + 2./i u*(t)E(t) 6m,n-. (6-2)

If 0m (x,t) and 0n (x,t) have definite parity and both have the same (even or

odd) parity, <m(t)Ixjn(t)> must be always zero, while if they have opposite

parities, <m(t)Ix 2n(t)> must vanish. Equations (6-1) and (6-2), however, do

not satisfy this rule. This property of the wavefunctions does not result

from the decay characteristic of the system, but from the interaction between

the system and the driving force, because the wavefunction of a damped (not

driven) harmonic oscillator has a definite parity. (21) Due to the absence of

definite parity of the wavefunction, the diagonal element of the dipole moment

takes the form given in Eq. (4-5), in contrast to a simple harmonic

oscillator. The real part of the off-diagonal elements of the dipole moment

is the same as that of the classical case.(
2 5 )

Because of the time-dependence Ion(Xt)I2 , the expectation values of Eop

(or A) and other physical quantities do not stay constant in time. The

diagonal parts of Eop and A are approximated as,

<E > (n + )N (W.,) (6-3)
op n,n 2mO[ _ ,2 + 7Y, ]

m~

<H> - e t<E > (6-4)n,n op n,n

The first term in Eq. (6-3) shows the decay of the quantum state, and the

second term represents the energy absorption from the external field; these

processes are related to the lineshape in optical phenomena. When there



2

exists no driving force (g(w',9) = 0), Eqs. (6-3) and (6-4) reduce to those of

a damped harmonic oscillator. (2 6 ) Hence, we can say that for a damped
A

harmonic oscillator the expectation values of H stays constant in time and

those of E do not, while for a damped driven oscillator the expectation ofop

both operators vary in time. Of course, for the simple harmonic case, the two

operators are identical and their expectation values remain stationary.

The method adopted in Sec. 5 to calculate P m,n(t) is different from that
(20,27)

of others, and Eq. (5-24) is of a new form. In practice, however, it

is a formbidable task to get the transition probability, Pmn' from Eq.

(5-24). Even for the simplest two-level case such that Im(t)> = l(,)> and

ln(O)> - 10(0)>, the calculation is quite tedious. Hence, we simply write the

result for this case:

P 1 0  - 1l< (t)1°(°)>12

- 2a 2E 2 (t) e -t/2 1 - e Yt + 2e-2-yt + (1+ eYt) 2(t)][ + e f]-

a2E(t) 2 {1 + e t 2 ((t))

x exp[- l+e -Yt t (6-5)

where we have used the approximation D - a0 exp(-yt/2), since in a real system

W 0 and y << w.

Here we note that the transitions should occur on a time scale shorter

than the system damping time 2 3 -y , i.e., ft << 1. Thus Eq. (6-5) can be

approximated as

P1 ,0(t) - I(c.,t) exp[-I(w',t)] (6-6)
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aog- , ) cs2(,t.0_4
) +( '2 sin2 ( t¢_l

a('t g-W ,O o
n~'t - I+[w _ ' L i (w')] 0.0 (6-7)

2m 0  )- ,2 + -2 2 + ( )

The transition probability depends strongly on the external driving force and

2
the energy transfer mechanism. Around the resonance frequencies w' = w +

o 22 /4- w , Eq. (6-9) becomes
m

22

RIg 2m 2 , W 2 /42 (Yw')2 (6-8)

R( 2m0

where this form is related to the lineshape in optical phenomena. Application

of the results in this work to optical phenomena on a dielectric surface, to

finding the coherent states (28) and to the time-dependent invariant (29)

problem will be left for further study.
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